博客
关于我
【路径规划】基于matlab蚁群算法智能车路径规划【含Matlab源码 137期】
阅读量:130 次
发布时间:2019-02-27

本文共 591 字,大约阅读时间需要 1 分钟。

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种基于概率和启发式的迭代优化算法。该算法由Marco Dorigo于1992年提出,灵感来源于蚂蚁在觅食过程中的行为。蚁群算法在多个领域得到广泛应用,包括模式识别、机器学习、工业优化控制、生物科学和社会科学等。

蚁群算法的基本原理主要包括三个核心机制:信息素的随机蒸发、信息素的增强和路径选择。算法通过模拟蚂蚁觅食过程,逐步优化路径。信息素的随机蒸发机制使得路径选择具有随机性,而信息素的增强机制则根据路径的质量调整蚂蚁的选择概率。通过多次迭代,蚂蚁群逐步探索出最优路径。

以下是蚁群算法的典型实现步骤:

  • 初始化地形图G和信息素矩阵Tau。
  • 设置蚂蚁群的迭代次数、蚂蚁数量、起始点和终止点。
  • 通过迭代更新蚂蚁的路径选择:
    • 状态初始化为起始点。
    • 使用转轮赌法选择下一步移动方向。
    • 路径更新并记录路径长度。
    • 更新禁忌表,避免重复访问节点。
  • 信息素更新:
    • 信息素随机蒸发。
    • 信息素增强:根据路径质量和信息素重要程度调整信息素浓度。
  • 蚁群算法的收敛曲线变化趋势显示,该算法能够逐步减少路径长度并趋于稳定。智能车运动轨迹表明蚂蚁群在多次迭代后能够找到较优路径。

    蚁群算法在多个实际问题中表现优异,适用于具有复杂约束条件的最短路径问题。该算法的优势在于其自适应性和多样性,能够在动态环境中有效调整路径选择。

    转载地址:http://momf.baihongyu.com/

    你可能感兴趣的文章
    Net.Framework概述
    查看>>
    NET3.0+中使软件发出声音[整理篇]<转>
    查看>>
    net::err_aborted 错误码 404
    查看>>
    NetApp凭借领先的混合云数据与服务把握数字化转型机遇
    查看>>
    NetAssist网络调试工具使用指南 (附NetAssist工具包)
    查看>>
    Netbeans 8.1启动参数配置
    查看>>
    NetBeans IDE8.0需要JDK1.7及以上版本
    查看>>
    NetBeans之JSP开发环境的搭建...
    查看>>
    NetBeans之改变难看的JSP脚本标签的背景色...
    查看>>
    netbeans生成的maven工程没有web.xml文件 如何新建
    查看>>
    netcat的端口转发功能的实现
    查看>>
    NetCore 上传,断点续传,可支持流上传
    查看>>
    Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
    查看>>
    Netem功能
    查看>>
    netfilter应用场景
    查看>>
    Netflix:当你按下“播放”的时候发生了什么?
    查看>>
    Netflix推荐系统:从评分预测到消费者法则
    查看>>
    netframework 4.0内置处理JSON对象
    查看>>
    Netgear WN604 downloadFile.php 信息泄露漏洞复现(CVE-2024-6646)
    查看>>
    Netgear wndr3700v2 路由器刷OpenWrt打造全能服务器(十一)备份
    查看>>