博客
关于我
【路径规划】基于matlab蚁群算法智能车路径规划【含Matlab源码 137期】
阅读量:130 次
发布时间:2019-02-27

本文共 591 字,大约阅读时间需要 1 分钟。

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种基于概率和启发式的迭代优化算法。该算法由Marco Dorigo于1992年提出,灵感来源于蚂蚁在觅食过程中的行为。蚁群算法在多个领域得到广泛应用,包括模式识别、机器学习、工业优化控制、生物科学和社会科学等。

蚁群算法的基本原理主要包括三个核心机制:信息素的随机蒸发、信息素的增强和路径选择。算法通过模拟蚂蚁觅食过程,逐步优化路径。信息素的随机蒸发机制使得路径选择具有随机性,而信息素的增强机制则根据路径的质量调整蚂蚁的选择概率。通过多次迭代,蚂蚁群逐步探索出最优路径。

以下是蚁群算法的典型实现步骤:

  • 初始化地形图G和信息素矩阵Tau。
  • 设置蚂蚁群的迭代次数、蚂蚁数量、起始点和终止点。
  • 通过迭代更新蚂蚁的路径选择:
    • 状态初始化为起始点。
    • 使用转轮赌法选择下一步移动方向。
    • 路径更新并记录路径长度。
    • 更新禁忌表,避免重复访问节点。
  • 信息素更新:
    • 信息素随机蒸发。
    • 信息素增强:根据路径质量和信息素重要程度调整信息素浓度。
  • 蚁群算法的收敛曲线变化趋势显示,该算法能够逐步减少路径长度并趋于稳定。智能车运动轨迹表明蚂蚁群在多次迭代后能够找到较优路径。

    蚁群算法在多个实际问题中表现优异,适用于具有复杂约束条件的最短路径问题。该算法的优势在于其自适应性和多样性,能够在动态环境中有效调整路径选择。

    转载地址:http://momf.baihongyu.com/

    你可能感兴趣的文章
    MySql索引为什么使用B+树
    查看>>
    WARNING!VisualDDK wizard was unable to find any DDK/WDK installed on your system.
    查看>>
    mysql索引创建和使用注意事项
    查看>>
    MySQL索引原理以及查询优化
    查看>>
    Mysql索引底层结构的分析
    查看>>
    MySQL索引底层:B+树详解
    查看>>
    Mysql索引总结
    查看>>
    MySQL索引背后的数据结构及算法原理
    查看>>
    mysql索引能重复吗_mysql “索引”能重复吗?“唯一索引”与“索引”区别是什么?...
    查看>>
    mysql经常使用命令
    查看>>
    mysql给账号授权相关功能 | 表、视图等
    查看>>
    MySQL缓存使用率超过80%的解决方法
    查看>>
    Mysql缓存调优的基本知识(附Demo)
    查看>>
    mysql网站打开慢问题排查&数据库优化
    查看>>
    mysql网络部分代码
    查看>>
    mysql自动化同步校验_Shell: 分享MySQL数据同步+主从复制自动化脚本_20190313_七侠镇莫尛貝...
    查看>>
    mysql自增id超大问题查询
    查看>>
    MySQL自带information_schema数据库使用
    查看>>
    MySQL获取分组后的TOP 1和TOP N记录
    查看>>
    MySQL蜜罐反制获取攻击者信息
    查看>>